skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smitha Pillai, Kavya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Functional regulation of cell signaling through dynamic changes in protein activity state as well as spatial organization represent two dynamic, complex, and conserved phenomena in biology. Seemingly separate areas of ‐omics method development have focused on building tools that can detect and quantify protein activity states, as well as map sub‐cellular and intercellular protein organization. Integration of these efforts, through the development of chemical tools and platforms that enable detection and quantification of protein functional states with spatial resolution provide opportunities to better understand heterogeneity in the proteome within cell organelles, multi‐cellular tissues, and whole organisms. This review provides an overview of and considerations for major classes of chemical proteomic probes and technologies that enable protein activity mapping from sub‐cellular compartments to live animals. 
    more » « less